

The Seal of The American Kennel Club affixed hereto certifies that this pedigree was compiled from official Stud Book records on September 9, 2019.

AMERICAN KENNEL CLUB

NAME

PINE CREEK'S C J

BREED

POODLE

COLOR

BLUE, BLACK POINTS

SIRE

SPRING CREEK BOUNCING PLUTO PR18421204 12-18 (AKC DNA #V874639)

DAM

DOUBLE A'S BELLA PR19709401 12-17 BREEDER

BREED

ABNER K STOLTZFUS

OWNER

NAOMI MILLER 3750 TOWNSHIP ROAD 124 MILLERSBURG OH 44654-8912 NUMBER PR21095301

MALE

DATE OF BIRTH JULY 22, 2018

CERTIFICATE ISSUED SEPTEMBER 9, 2019 This certificate invalidates all previous certificates issued.

If a date appears after the name and number of the sire and dam, it indicates the issue of the Stud Book Register in which the sire or dam is published.

For Transfer Instructions, see back of Certificate.

This Certificate issued with the right to correct or revoke by the American Kennel Club.

REGISTRATION CERTIFICATE

TARARAMAN MARAAMANA M

RESULTS:

owner

Based upon the radiograph submitted, the consensus was that no evidence of hip dysplasia was recognized. The hip joint conformation was evaluated as:

WAYNE MILLER 3750 TR 124 MILLERSBURG, OH 44654

EXCELLENT

Kellendin

G.G.KELLER. D.V.M., M.S., DACVR CHIEF OF VETERINARY SERVICES

www.ofa.org

Test Date: September 22nd, 2019

Rembark

embk.me/cj25

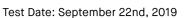
GENETIC STATS

Predicted adult weight: **11 lbs** Genetic age: **26 human years** Based on the date of birth you provided

TEST DETAILS

Kit number: EM-6082937 Swab number: 31001810010312

Registration: AKC PR21095301



Alternative Names Toy Poodle, Miniature Poodle

Fun Fact

Although Toy Poodles are the most popular dog breed in Japan, Poodles as a group are the eight most popular breed in the US, with miniature poodles being the most common variety.

embk.me/cj25

embark

POODLE (SMALL)

Miniature and toy poodles are varieties of the poodle breed which originated in Germany in the 15th century. Unlike the larger standard poodle (>15 inches tall), these small poodles were not developed for hunting---except for truffles!---and were generally used as lap dogs and companions. Small poodles are frequently used to create designer dogs like Schnoodles and Maltipoos with low-shedding, hypoallergenic coats. All poodles are highly intelligent and energetic, and need daily exercise and stimulation. They are overall healthy dogs, although heritable eye disease, epilepsy and allergies are relatively common, and toy poodles also have a heightened risk of accidents/trauma due to their small size.

Poodle (Standard) Sibling breed

Maltese Cousin breed

Havanese Cousin breed

Bichon Frise Cousin breed

Registration: AKC PR21095301

Rembark

RELATED BREEDS

Test Date: September 22nd, 2019

embk.me/cj25

MATERNAL LINE

Through C J's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: B1

B1 is the second most common maternal lineage in breeds of European or American origin. It is the female line of the majority of Golden Retrievers, Basset Hounds, and Shih Tzus, and about half of Beagles, Pekingese and Toy Poodles. This lineage is also somewhat common among village dogs that carry distinct ancestry from these breeds. We know this is a result of B1 dogs being common amongst the European dogs that their conquering owners brought around the world, because nowhere on earth is it a very common lineage in village dogs. It even enables us to trace the path of (human) colonization: Because most Bichons are B1 and Bichons are popular in Spanish culture, B1 is now fairly common among village dogs in Latin America.

HAPLOTYPE: B81

Part of the large B1 haplogroup, this haplotype occurs most frequently in Shih Tzus, Chihuahuas, and Poodles.

Registration: AKC PR21095301

Test Date: September 22nd, 2019

embk.me/cj25

PATERNAL LINE

Through C J's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1a

Some of the wolves that became the original dogs in Central Asia around 15,000 years ago came from this long and distinguished line of male dogs. After domestication, they followed their humans from Asia to Europe and then didn't stop there. They took root in Europe, eventually becoming the dogs that founded the Vizsla breed 1,000 years ago. The Vizsla is a Central European hunting dog, and all male Vizslas descend from this line. During the Age of Exploration, like their owners, these pooches went by the philosophy, "Have sail, will travel!" From the windy plains of Patagonia to the snug and homey towns of the American Midwest, the beaches of a Pacific paradise, and the broad expanse of the Australian outback, these dogs followed their masters to the outposts of empires. Whether through good fortune or superior genetics, dogs from the A1a lineage traveled the globe and took root across the world. Now you find village dogs from this line frolicking on Polynesian beaches, hanging out in villages across the Americas, and scavenging throughout Old World settlements.

Registration: AKC PR21095301

Kembark

HAPLOTYPE: H1a.45

Part of the A1a haplogroup, this haplotype occurs most frequently in mixed breed dogs.

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity (I) Locus, which has yet to be genetically mapped. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the k^yk^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^Bk^y may be brindle rather than black or brown.

More likely to have a mostly solid black or brown coat (K^BK^B)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Not expressed (a^ta)

Registration: AKC PR21095301

Rembark

embk.me/cj25

RESULT

Can have a melanistic

mask (E^me)

RESULT

embk.me/cj25

TRAITS: COAT COLOR (CONTINUED)

TRAIT

D Locus (MLPH)

Dogs with two copies of the **d** allele will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that dilute dogs have a higher incidence of Color Dilution Alopecia, especially in certain breeds. Dogs with one copy of the **d** allele will not be dilute, but can pass the **d** allele on to their puppies. Dark areas of hair and skin are not lightened (DD)

B Locus (TYRP1)

Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Black or gray hair and skin (BB)

Saddle Tan (RALY)

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

Not expressed (NI)

Registration: AKC PR21095301

embk.me/cj25

TRAITS: COAT COLOR (CONTINUED)

TRAIT

RESULT

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "phantom" merle, that is, they have a merle allele that does not affect coat color. Dogs with an **M*M*** result are likely to be phenotypically merle alleles and are unlikely to be phenotypically merle or double merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

One merle allele, likely to appear merle or "phantom merle" (M*m)

Note: This locus includes several alleles. At the time this dog was genotyped Embark we could not distinguish all of the possible alleles.

Registration: AKC PR21095301

DNA Test Report	Test Date: September 22nd, 2019	embk.me/cj25
RAITS: OTHER COAT	TRAITS	
TRAIT		RESULT
Furnishings (RSPO2) LINKAGE		
characteristic of breeds like the S alleles will not have furnishings, w	e F allele have "furnishings": the mustache, beard, and eyebrows chnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I which is sometimes called an "improper coat" in breeds where standard. The mutation is a genetic insertion which we measure hly correlated with the insertion.	Likely furnished (mustache, beard, and/or eyebrows) (FF)
Coat Length (FGF5)		
humans. In dogs, the T allele confe Long Haired Whippet. The ancestr	hair length in many different species, including cats, dogs, mice, and ers a long, silky haircoat as observed in the Yorkshire Terrier and the cal G allele causes a shorter coat as seen in the Boxer or the American eeds (such as Corgi), the long haircoat is described as "fluff."	Likely long coat (TT)
Shedding (MC5R)		
heavy or seasonal shedders, while and Chihuahuas, tend to be lighter	e ancestral C allele, like many Labradors and German Shepherd Dogs, are e those with two copies of the T allele, including many Boxers, Shih Tzus r shedders. Dogs with furnished/wire-haired coats caused by RSPO2 low shedders regardless of their genotype at this gene.	Likely light shedding (CT)
Coat Texture (KRT71)		
Poodles and Bichon Frises. Dogs w but there are other factors that ca	t one copy of the T allele have a wavy or curly coat characteristic of with two copies of the ancestral C allele are likely to have a straight coat, in cause a curly coat, for example if they at least one F allele for the ney are likely to have a curly coat. Dogs with short coats may carry one or have straight coats.	Likely curly coat (TT)

Registration: AKC PR21095301

embk.me/cj25

TRAITS: OTHER COAT TRAITS (CONTINUED) TRAIT RESULT Hairlessness (FOXI3) LINKAGE A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Very unlikely to be Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely hairless (NN) to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines. Hairlessness (SGK3) Very unlikely to be Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the ND hairless (NN) genotype are likely to be hairless while dogs with the NN genotype are likely to have a normal coat. Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE Dogs with two copies DD of this deletion in the SLC45A2 gene have oculocutaneous albinism type 2 (OCA2), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision Likely not albino (NN) problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion ND will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Registration: AKC PR21095301

embk.me/cj25

TRAITS: OTHER BODY FEATURES

TRAIT

RESULT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Likely medium or long muzzle (AC)

Likely normal-length tail (CC)

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **TT** or **TC** dogs will have hind dewclaws.

Unlikely to have hind dew claws (CC)

Registration: AKC PR21095301

embk.me/cj25

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

RESULT

eyes (NN)

Blue Eye Color (ALX4) LINKAGE

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

Less likely to have blue

DNA Test Report	Test Date: September 22nd, 2019	embk.me/cj25
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1) The I allele is associated with smaller b	ody size.	Smaller (II)
Body Size (IGFR1) The A allele is associated with smaller b	oody size.	Larger (GG)
Body Size (STC2) The A allele is associated with smaller b	oody size.	Larger (TT)
Body Size (GHR - E191K) The A allele is associated with smaller b	oody size.	Smaller (AA)
Body Size (GHR - P177L) The T allele is associated with smaller b	oody size.	Larger (CC)

Registration: AKC PR21095301

Test Date: September 22nd, 2019

embk.me/cj25

TRAITS: PERFORMANCE TRAIT RESULT Altitude Adaptation (EPAS1) Normal altitude This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those tolerance (GG) found at high elevations. Dogs with at least one A allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff. Appetite (POMC) LINKAGE This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more Normal food likely to have high food motivation, which can cause them to eat excessively, have higher body fat motivation (NN) percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We

measure this result using a linkage test.

Test Date: September 22nd, 2019

CLINICAL TOOLS

These clinical genetic tools can inform clinical decisions and diagnoses. These tools do not predict increased risk for disease.

Alanine Aminotransferase Activity (GPT)

C J's baseline ALT level is Normal

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

embk.me/cj25

HEALTH REPORT

How to interpret C J's genetic health results:

If C J inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested C J for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

	C J is at increased risk for one genetic health condition.
Chondro	dystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD

Breed-Relevant Genetic Conditions	5 variants not detected	<
Additional Genetic Conditions	177 variants not detected	٢

Registration: AKC PR21095301

embk.me/cj25

HEALTH REPORT

Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD (FGF4 retrogene - CFA12)

C J inherited both copies of the variant we tested C J is at increased risk for Type I IVDD

How to interpret this result

C J has two copies of an FGF4 retrogene on chromosome 12. In some breeds such as Beagles, Cocker Spaniels, and Dachshunds (among others) this variant is found in nearly all dogs. While those breeds are known to have an elevated risk of IVDD, many dogs in those breeds never develop IVDD. For mixed breed dogs and purebreds of other breeds where this variant is not as common, risk for Type I IVDD is greater for individuals with this variant than for similar dogs.

What is Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD?

Type I Intervertebral Disc Disease (IVDD) is a back/spine issue that refers to a health condition affecting the discs that act as cushions between vertebrae. With Type I IVDD, affected dogs can have a disc event where it ruptures or herniates towards the spinal cord. This pressure on the spinal cord causes neurologic signs which can range from a wobbly gait to impairment of movement. Chondrodystrophy (CDDY) refers to the relative proportion between a dog's legs and body, wherein the legs are shorter and the body longer. There are multiple different variants that can cause a markedly chondrodystrophic appearance as observed in Dachshunds and Corgis. However, this particular variant is the only one known to also increase the risk for IVDD.

When signs & symptoms develop in affected dogs

Signs of CDDY are recognized in puppies as it affects body shape. IVDD is usually first recognized in adult dogs, with breed specific differences in age of onset.

Signs & symptoms

Research indicates that dogs with one or two copies of this variant have a similar risk of developing IVDD. However, there are some breeds (e.g. Beagles and Cocker Spaniels, among others) where this variant has been passed down to nearly all dogs of the breed and most do not show overt clinical signs of the disorder. This suggests that there are other genetic and environmental factors (such as weight, mobility, and family history) that contribute to an individual dog's risk of developing clinical IVDD. Signs of IVDD include neck or back pain, a change in your dog's walking pattern (including dragging of the hind limbs), and paralysis. These signs can be mild to severe, and if your dog starts exhibiting these signs, you should schedule an appointment with your veterinarian for a diagnosis.

How vets diagnose this condition

For CDDY, dogs with one copy of this variant may have mild proportional differences in their leg length. Dogs with two copies of this variant will often have visually longer bodies and shorter legs. For IVDD, a neurological exam will be performed on any dog showing suspicious signs. Based on the result of this exam, radiographs to detect the presence of calcified discs or advanced imaging (MRI/CT) to detect a disc rupture may be recommended.

How this condition is treated

IVDD is treated differently based on the severity of the disease. Mild cases often respond to medical management which includes cage rest and pain management, while severe cases are often treated with surgical intervention. Both conservative and surgical treatment should be followed up with rehabilitation and physical therapy.

Registration: AKC PR21095301

Test Date: September 22nd, 2019

embk.me/cj25

BREED-RELEVANT CONDITIONS TESTED

C J did not have the variants that we tested for, that are relevant to his breed:

- Von Willebrand Disease Type I (VWF)
- Progressive Retinal Atrophy, prcd (PRCD Exon 1)
- GM2 Gangliosidosis (HEXB, Poodle Variant)
- Neonatal Encephalopathy with Seizures, NEWS (ATF2)
- 🗸 Osteochondrodysplasia, Skeletal Dwarfism (SLC13A1)

Registration: AKC PR21095301

Test Date: September 22nd, 2019

embk.me/cj25

ADDITIONAL CONDITIONS TESTED

C J did not have the variants that we tested for, in the following conditions that the potential effect on dogs with C J's breed may not yet be known.

- MDR1 Drug Sensitivity (MDR1)
- P2Y12 Receptor Platelet Disorder (P2Y12)
- 🔀 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Terrier Variant)
- 🌄 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)
- Factor VII Deficiency (F7 Exon 5)
- 💽 Factor VIII Deficiency, Hemophilia A (F8 Exon 10, Boxer Variant)
- 😴 Factor VIII Deficiency, Hemophilia A (F8 Exon 11, Shepherd Variant 1)
- 😴 Factor VIII Deficiency, Hemophilia A (F8 Exon 1, Shepherd Variant 2)
- 💽 Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)
- Thrombopathia (RASGRP1 Exon 8)
- 🌄 Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)
- 🔀 Von Willebrand Disease Type III, Type III vWD (VWF Exon 4)
- Von Willebrand Disease Type III, Type III vWD (VWF Exon 7)
- Von Willebrand Disease Type II, Type II vWD (VWF)
- Canine Leukocyte Adhesion Deficiency Type I, CLADI (ITGB2)
- Canine Leukocyte Adhesion Deficiency Type III, CLADIII (FERMT3)
- 😋 Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)
- Canine Elliptocytosis (SPTB Exon 30)
- 😴 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12)
- May-Hegglin Anomaly (MYH9)
- Prekallikrein Deficiency (KLKB1 Exon 8)
- Pyruvate Kinase Deficiency (PKLR Exon 5)
- Pyruvate Kinase Deficiency (PKLR Exon 7 Labrador Variant)

Registration: AKC PR21095301

embk.me/cj25

ADDITIONAL CONDITIONS TESTED

- **Pyruvate Kinase Deficiency (PKLR Exon 10)**
- Trapped Neutrophil Syndrome (VPS13B)
- 🌄 Ligneous Membranitis, LM (PLG)
- Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)
- Complement 3 Deficiency, C3 Deficiency (C3)
- Severe Combined Immunodeficiency (PRKDC)
- Severe Combined Immunodeficiency (RAG1)
- X-linked Severe Combined Immunodeficiency (IL2RG Variant 1)
- X-linked Severe Combined Immunodeficiency (IL2RG Variant 2)
- 📀 Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21 Irish Setter Variant)
- Progressive Retinal Atrophy, rcd3 (PDE6A)
- Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)
- Progressive Retinal Atrophy (CNGB1)
- Progressive Retinal Atrophy (SAG)
- 😴 Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)
- 😴 Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)
- Progressive Retinal Atrophy, crd1 (PDE6B)
- Progressive Retinal Atrophy, crd2 (IQCB1)
- Progressive Retinal Atrophy crd4/cord1 (RPGRIP1)
- X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)
- Progressive Retinal Atrophy, PRA3 (FAM161A)
- 🔇 Collie Eye Anomaly, Choroidal Hypoplasia, CEA (NHEJ1)
- 📀 Day blindness, Cone Degeneration, Achromatopsia (CNGB3 Exon 6)
- 🔀 Achromatopsia (CNGA3 Exon 7 German Shepherd Variant)
- Achromatopsia (CNGA3 Exon 7 Labrador Retriever Variant)

Registration: AKC PR21095301

embk.me/cj25

ADDITIONAL CONDITIONS TESTED

- 🗸 Autosomal Dominant Progressive Retinal Atrophy (RHO)
- Canine Multifocal Retinopathy (BEST1 Exon 2)
- Canine Multifocal Retinopathy (BEST1 Exon 5)
- 🔀 Canine Multifocal Retinopathy (BEST1 Exon 10 Deletion)
- 🔀 Canine Multifocal Retinopathy (BEST1 Exon 10 SNP)
- 🔀 Glaucoma (ADAMTS10 Exon 9)
- Glaucoma (ADAMTS10 Exon 17)
- 🔀 Glaucoma (ADAMTS17 Exon 11)
- Glaucoma (ADAMTS17 Exon 2)
- 😴 Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts (HSF4 Exon 9 Shepherd Variant)
- Primary Lens Luxation (ADAMTS17)
- Congenital Stationary Night Blindness (RPE65)
- Macular Corneal Dystrophy, MCD (CHST6)
- 2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis (APRT)
- Cystinuria Type I-A (SLC3A1)
- 🚫 Cystinuria Type II-A (SLC3A1)
- Cystinuria Type II-B (SLC7A9)
- 🔇 Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU (SLC2A9)
- 📀 Polycystic Kidney Disease, PKD (PKD1)
- Primary Hyperoxaluria (AGXT)
- Protein Losing Nephropathy, PLN (NPHS1)
- X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)
- 🔇 Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 3)
- Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3)
- Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly Coat Syndrome, CKCSID (FAM83H Exon 5)

Registration: AKC PR21095301

embk.me/cj25

ADDITIONAL CONDITIONS TESTED

- X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia (EDA Intron 8)
- Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND (FLCN Exon 7)
- 🔀 Canine Fucosidosis (FUCA1)
- 😴 🛛 Glycogen Storage Disease Type II, Pompe's Disease, GSD II (GAA)
- 🛃 Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC)
- 🔀 Glycogen Storage Disease Type IIIA, GSD IIIA (AGL)
- Mucopolysaccharidosis Type I, MPS I (IDUA)
- 🔀 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6 Variant 1)
- 🔀 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6 Variant 2)
- 💽 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5)
- 💽 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3)
- Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM Whippet and English Springer Spaniel Variant)
- 🛃 Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM Wachtelhund Variant)
- Lagotto Storage Disease (ATG4D)
- Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8)
- Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4)
- 🚫 Neuronal Ceroid Lipofuscinosis 1, Cerebellar Ataxia, NCL4A (ARSG Exon 2)
- Neuronal Ceroid Lipofuscinosis 1, NCL 5 (CLN5 Border Collie Variant)
- Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7)
- Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 English Setter Variant)
- Neuronal Ceroid Lipofuscinosis (MFSD8)
- Neuronal Ceroid Lipofuscinosis (CLN8 Australian Shepherd Variant)
- Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5)
- Neuronal Ceroid Lipofuscinosis (CLN5 Golden Retriever Variant)
- 🛃 Adult-Onset Neuronal Ceroid Lipofuscinosis (ATP13A2, Tibetan Terrier Variant)

Registration: AKC PR21095301

ADDITIONAL CONDITIONS TESTED

- 🔀 GM1 Gangliosidosis (GLB1 Exon 15 Shiba Inu Variant)
- 🔀 GM1 Gangliosidosis (GLB1 Exon 15 Alaskan Husky Variant)
- 🔀 GM1 Gangliosidosis (GLB1 Exon 2)
- 🔀 GM2 Gangliosidosis (HEXA)
- Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5)
- 🏹 Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (Italian Greyhound Variant)
- Persistent Mullerian Duct Syndrome, PMDS (AMHR2)
- 💽 Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A)
- 😴 Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)
- 🔇 Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy (SLC19A3)
- 🔀 Alexander Disease (GFAP)
- 🔇 Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD (SPTBN2)
- 😋 Cerebellar Ataxia, Progressive Early-Onset Cerebellar Ataxia (SEL1L)
- Cerebellar Hypoplasia (VLDLR)
- 🔀 Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA (CAPN1)
- 😴 Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)
- 🔀 Hereditary Ataxia (RAB24)
- 😴 Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy (LGI2)
- 🔀 Degenerative Myelopathy, DM (SOD1A)
- Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2)
- Hypomyelination and Tremors (FNIP2)
- Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome (PLP)
- 🔀 Neuroaxonal Dystrophy, NAD (Spanish Water Dog Variant)
- C L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH)
- Polyneuropathy, NDRG1 Greyhound Variant (NDRG1 Exon 15)

Registration: AKC PR21095301

embk.me/cj25

ADDITIONAL CONDITIONS TESTED

S	Polyneuropathy, NDRG1 Malamute Variant (NDRG1 Exon 4)
S	Narcolepsy (HCRTR2 Intron 6)
S	Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 15)
S	Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 4)
•	Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV (RAB3GAP1, Rottweiler Variant)
V	Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS (GDNF-AS)
V	Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 (LPN1, ARHGEF10)
S	Juvenile Myoclonic Epilepsy (DIRAS1)
S	Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2 (GJA9)
S	Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome (KCNJ10)
S	Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 (ATP1B2)
S	Dilated Cardiomyopathy, DCM1 (PDK4)
S	Dilated Cardiomyopathy, DCM2 (TTN)
S	Long QT Syndrome (KCNQ1)
S	Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)
S	Muscular Dystrophy (DMD Pembroke Welsh Corgi Variant)
S	Muscular Dystrophy (DMD Golden Retriever Variant)
S	Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)
S	Exercise-Induced Collapse (DNM1)
S	Inherited Myopathy of Great Danes (BIN1)
0	Myostatin Deficiency, Bully Whippet Syndrome (MSTN)
Ø	Myotonia Congenita (CLCN1 Exon 7)
S	Myotonia Congenita (CLCN1 Exon 23)
0	Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM (MTM1, Labrador Variant)
0	Hypocatalasia, Acatalasemia (CAT)

Registration: AKC PR21095301

embk.me/cj25

ADDITIONAL CONDITIONS TESTED

- **V** Pyruvate Dehydrogenase Deficiency (PDP1)
- Malignant Hyperthermia (RYR1)
- 🔀 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 53)
- 🔀 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 8)
- 🔀 Congenital Myasthenic Syndrome (CHAT)
- 🔀 Congenital Myasthenic Syndrome (COLQ)
- Episodic Falling Syndrome (BCAN)
- 💎 Paroxysmal Dyskinesia, PxD (PGIN)
- 🗸 Dystrophic Epidermolysis Bullosa (COL7A1)
- 🔀 Ectodermal Dysplasia, Skin Fragility Syndrome (PKP1)
- 🔀 Ichthyosis, Epidermolytic Hyperkeratosis (KRT10)
- 🚺 Ichthyosis (PNPLA1)
- 🛃 Ichthyosis (SLC27A4)
- C Ichthyosis (NIPAL4)
- 🜄 Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita (KRT16)
- Hereditary Footpad Hyperkeratosis (FAM83G)
- 🔀 Hereditary Nasal Parakeratosis (SUV39H2)
- 🔀 Musladin-Lueke Syndrome (ADAMTSL2)
- 📀 Oculocutaneous Albinism, OCA2 (Pekingese Type)
- Cleft Lip and/or Cleft Palate (ADAMTS20)
- Hereditary Vitamin D-Resistant Rickets (VDR)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A2)
- Steogenesis Imperfecta, Brittle Bone Disease (SERPINH1)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A1)
- Skeletal Dysplasia 2, SD2 (COL11A2)

Registration: AKC PR21095301

Test Date: September 22nd, 2019

embk.me/cj25

ADDITIONAL CONDITIONS TESTED

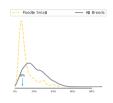
Craniomandibular Osteopathy, CMO (SLC37A2)

Chondrodystrophy, Norwegian Elkhound and Karelian Bear Dog Variant (ITGA10)

Registration: AKC PR21095301

≻embark

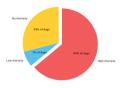
embk.me/cj25


INBREEDING AND DIVERSITY

identical by descent to those on the father's side.

CATEGORY

RESULT


High Diversity

How common is this amount of diversity in purebreds:

Na daveray Disk dage Unit dage Link dage Link

High Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

Coefficient Of Inbreeding

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.

Registration: AKC PR21095301