

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

BREED ANCESTRY

Bernese Mountain Dog : 100.0%

GENETIC STATS

Predicted adult weight: **90 lbs** Life stage: **Mature adult** Based on your dog's date of birth provided.

TEST DETAILS

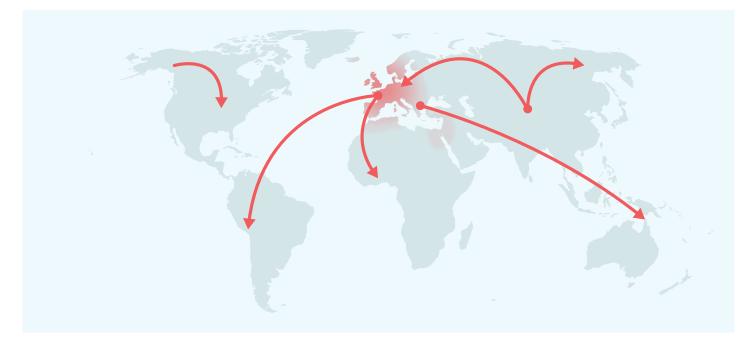
Kit number: EM-21728644 Swab number: 31220411600232

Fun Fact Berners can haul up to 1,000 pounds -10 times their weight! Test Date: April 10th, 2023

embk.me/pinecreekamberrose

BERNESE MOUNTAIN DOG

The Bernese Mountain Dog, commonly referred to as a 'Berner', is a versatile working dog that is both visually pleasing and a loyal companion. The Bernese Mountain Dog was bred to herd cattle, pull carts and be a watchdog in the Swiss farmlands. The ancient 'Molosser' breed is considered the main contributor to Mastiff-type dogs, which include the Berner. It is likely that the Molosser bred with farm dogs from the Swiss Alps in the first century B.C., developing a number of Swiss Sennenhund ("mountain dog") breeds, including the Berner Sennenhund. It is thought that the Berner continued working on these Swiss farmlands for over 2,000 years, before their primary purpose switched from herding cattle to appearing as a show dog in the early 20th century. They were first classified as the Bernese Mountain Dog at this time by the Swiss Kennel Club. Following World War I, in which the breed nearly became extinct, Berners were exported to America before being accepted by the AKC as an official breed in 1937. Breed development faltered somewhat during World War II before Berners became an established and popular breed in the mid to late 20th century. This easygoing breed likes to be around their owners, where their calm and intelligent nature makes them a beloved family dog. Berners exhibit their working dog instincts in their willingness to learn and relative ease to be trained. Their heritage also often results in being protective and sometimes shy towards new people and dogs. Early socialization training allows the Bernese Mountain Dog to learn to overcome initial caution around new things. This breed is a large dog, weighing around 100 pounds, and likes to keep busy, so it is important training is conducted while young and manageable. While they are well-tempered dogs, they are slow to mature and often exhibit puppy behavior for a number of years before reaching full maturity. Due to their beautiful and thick double coat, Berners tend to shed generously, requiring frequent brushing to keep under control. Unfortunately, owing to their size and limited gene pool, Bernese Mountain Dogs are prone to health problems and have a life expectancy of between 6-8 years. Nonetheless, this lovable dog



Test Date: April 10th, 2023

embk.me/pinecreekamberrose

MATERNAL LINE

Through Rose's mitochondrial DNA we can trace her mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1e

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to "explode" out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

Registration: American Kennel Club

HAPLOTYPE: A22

Part of the large A1e haplogroup, we see this haplotype in Bernese Mountain Dogs, German Shepherd Dogs, Great Danes, and village dogs in the Democratic Republic of the Congo.

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

No dark mask or grizzle (EE)

RESULT

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)


The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the E^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of E^m, dogs with the E^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both E^m and E variants, dogs with the E^a or E^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the E^g, E^a, or E^h variants (example: E^gE^a) is also expected to express the grizzle phenotype.

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the k^yk^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^Bk^y may be brindle rather than black or brown.

More likely to have a patterned haircoat (k^yk^y)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any light hair likely yellow or tan (Intermediate Red Pigmentation)

RESULT

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Black/Brown and tan coat color pattern (a^ta^t)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (DD)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

TRAITS: COAT COLOR (CONTINUED)

TRAIT RESULT Cocoa (HPS3) Dogs with the coco genotype will produce dark brown pigment instead of black in both their hair and skin. No co alleles, not Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. expressed (NN) Dogs that have the coco genotype as well as the bb genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Black or gray hair and Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. skin (BB) E Locus ee dogs that carry two b alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Likely saddle tan Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly patterned (NI) black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced

S Locus (MITF)

by this gene.

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "nonexpressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

Likely no impact on coat pattern (rr)

No merle alleles (mm)

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely unfurnished (no mustache, beard, and/or eyebrows) (II)

RESULT

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.

The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Likely heavy/seasonal shedding (CT)

RESULT

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Likely straight coat (CC)

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Very unlikely to be hairless (NN)

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies DD of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye Likely not albino (NN) pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion ND will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

Likely medium or long

muzzle (CC)

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Likely to have hind dew claws (TT)

Likely normal-length

tail (CC)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4)

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Back Muscling & Bulk, Large Breed (ACSL4)

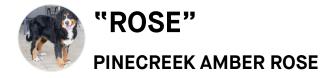

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (TC)

Less likely to have blue

eyes (NN)

Registration:



DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1) The I allele is associated with smaller body size.		Larger (NN)
Body Size (IGFR1) The A allele is associated with smaller body size.		Larger (GG)
Body Size (STC2) The A allele is associated with smaller body size.		Intermediate (TA)
Body Size (GHR - E191K) The A allele is associated with smaller body size.		Larger (GG)
Body Size (GHR - P177L) The T allele is associated with smaller body size.		Larger (CC)

DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
TRAITS: PERFORMANC	E	
TRAIT		RESULT
Altitude Adaptation (EPAS1)		
found at high elevations. Dogs with	pecially tolerant of low oxygen environments (hypoxia), such as t at least one A allele are less susceptible to "altitude sickness." T breeds from high altitude areas such as the Tibetan Mastiff.	tolerance (GG)
Appetite (POMC)		
dogs with no copies of the mutation likely to have high food motivation, w percentage, and be more prone to o	found primarily in Labrador and Flat Coated Retrievers. Compared in (NN), dogs with one (ND) or two (DD) copies of the mutation are which can cause them to eat excessively, have higher body fat besity. Read more about the genetics of POMC, and learn how yo lost (https://embarkvet.com/resources/blog/pomc-dogs/). We test.	e more Normal food motivation (NN)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

HEALTH REPORT

How to interpret Rose's genetic health results:

If Rose inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Rose for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 255 genetic health risks we analyzed, we found 1 result that you should learn about.

Notable results (1)

Degenerative Myelopathy, DM

Clear results

Breed-relevant (1)

Other (253)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Rose, and may influence her chances of developing certain health conditions.

Degenerative Myelopathy, DM (SOD1A)	Notable
Von Willebrand Disease Type I, Type I vWD (VWF)	Clear

Registration: American Kennel Club (AKC)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

OTHER RESULTS


Research has not yet linked these conditions to dogs with similar breeds to Rose. Review any increased risk or notable results to understand her potential risk and recommendations.

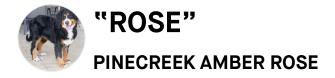
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
ALT Activity (GPT)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
⊘ Canine Multiple System Degenerat	ion (SERAC1 Exon 4, Chinese Crested Variant)	Clear
⊘ Canine Multiple System Degenerat	ion (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mort	ality (YARS2)	Clear
Centronuclear Myopathy, CNM (PTF	PLA)	Clear
🔗 Cerebellar Hypoplasia (VLDLR, Eura	asier Variant)	Clear
🔗 Chondrodystrophy (ITGA10, Norweg	gian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAM	TS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, No	va Scotia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUBN E	xon 8, Beagle Variant)	Clear
Cobalamin Malabsorption (CUBN E	xon 53, Border Collie Variant)	Clear
Ocollie Eye Anomaly (NHEJ1)		Clear
Complement 3 Deficiency, C3 Defic	iency (C3)	Clear
Orngenital Cornification Disorder (NSDHL, Chihuahua Variant)	Clear
⊘ Congenital Hypothyroidism (TPO, R	at, Toy, Hairless Terrier Variant)	Clear
Congenital Hypothyroidism (TPO, T	enterfield Terrier Variant)	Clear
Ocongenital Hypothyroidism with Go	biter (TPO Intron 13, French Bulldog Variant)	Clear
Congenital Hypothyroidism with Go	biter (SLC5A5, Shih Tzu Variant)	Clear
Ocongenital Macrothrombocytopeni	a (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear

DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
Ongenital Myasthenic Syndrome,	, CMS (COLQ, Labrador Retriever Variant)	Clear
Orngenital Myasthenic Syndrome,	, CMS (COLQ, Golden Retriever Variant)	Clear
Orgenital Myasthenic Syndrome,	, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
Orngenital Myasthenic Syndrome,	, CMS (CHRNE, Jack Russell Terrier Variant)	Clear
Ocongenital Stationary Night Blindr	ness (LRIT3, Beagle Variant)	Clear
Ongenital Stationary Night Blindr	ness (RPE65, Briard Variant)	Clear
🔗 Craniomandibular Osteopathy, CM	0 (SLC37A2)	Clear
🔗 Craniomandibular Osteopathy, CM	O (SLC37A2 Intron 16, Basset Hound Variant)	Clear
Orstinuria Type I-A (SLC3A1, Newf	oundland Variant)	Clear
Orstinuria Type II-A (SLC3A1, Aust	ralian Cattle Dog Variant)	Clear
Orstinuria Type II-B (SLC7A9, Mini	ature Pinscher Variant)	Clear
Oay Blindness (CNGB3 Deletion, A	laskan Malamute Variant)	Clear
Oay Blindness (CNGA3 Exon 7, Ger	man Shepherd Variant)	Clear
Oay Blindness (CNGA3 Exon 7, Lab	rador Retriever Variant)	Clear
Oay Blindness (CNGB3 Exon 6, Ger	rman Shorthaired Pointer Variant)	Clear
O Deafness and Vestibular Syndrome	e of Dobermans, DVDob, DINGS (MYO7A)	Clear
Oemyelinating Polyneuropathy (SE	BF2/MTRM13)	Clear
Oental-Skeletal-Retinal Anomaly (MIA3, Cane Corso Variant)	Clear

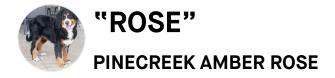


DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
O Diffuse Cystic Renal Dysplasia and H	Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Dilated Cardiomyopathy, DCM (RBM	20, Schnauzer Variant)	Clear
Dilated Cardiomyopathy, DCM1 (PDK)	(4, Doberman Pinscher Variant 1)	Clear
Dilated Cardiomyopathy, DCM2 (TTN)	N, Doberman Pinscher Variant 2)	Clear
O Disproportionate Dwarfism (PRKG2,	Dogo Argentino Variant)	Clear
Ory Eye Curly Coat Syndrome (FAM8	33H Exon 5)	Clear
Oystrophic Epidermolysis Bullosa (C	COL7A1, Central Asian Shepherd Dog Variant)	Clear
Oystrophic Epidermolysis Bullosa (C	COL7A1, Golden Retriever Variant)	Clear
Searly Bilateral Deafness (LOXHD1 Ex	on 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Searly Onset Cerebellar Ataxia (SEL1L	L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Dobermar	n Pinscher Variant)	Clear
Senamel Hypoplasia (ENAM Deletion,	, Italian Greyhound Variant)	Clear
Senamel Hypoplasia (ENAM SNP, Pars	son Russell Terrier Variant)	Clear
Sepisodic Falling Syndrome (BCAN)		Clear
Exercise-Induced Collapse, EIC (DN	M1)	Clear
Sactor VII Deficiency (F7 Exon 5)		Clear
Sactor XI Deficiency (F11 Exon 7, Ker	ry Blue Terrier Variant)	Clear



DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
Samilial Nephropathy (COL4A	4 Exon 3, Cocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A	4 Exon 30, English Springer Spaniel Variant)	Clear
🔗 Fanconi Syndrome (FAN1, Bas	enji Variant)	Clear
Fetal-Onset Neonatal Neuroa	xonal Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
🔗 Glanzmann's Thrombasthenia	1 Type I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
🔗 Glanzmann's Thrombasthenia	Type I (ITGA2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy,	Krabbe disease (GALC Exon 5, Terrier Variant)	Clear
🔗 Glycogen Storage Disease Typ	pe IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
🔗 Glycogen Storage Disease Typ	pe IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Typ and English Springer Spaniel	be VII, Phosphofructokinase Deficiency, PFK Deficiency (PF Variant)	FKM, Whippet Clear
 Glycogen storage disease Typ Wachtelhund Variant) 	be VII, Phosphofructokinase Deficiency, PFK Deficiency (PF	FKM, Clear
GM1 Gangliosidosis (GLB1 Exc	on 2, Portuguese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Exc	on 15, Shiba Inu Variant)	Clear
GM1 Gangliosidosis (GLB1 Exc	on 15, Alaskan Husky Variant)	Clear
🔗 GM2 Gangliosidosis (HEXA, Ja	panese Chin Variant)	Clear
GM2 Gangliosidosis (HEXB, Po	podle Variant)	Clear
Golden Retriever Progressive	Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive	Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear

DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberros
OTHER RESULTS		
Goniodysgenesis and Glauco	ma, Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, Ge	rman Shepherd Variant 1)	Clear
Hemophilia A (F8 Exon 1, Gerr	man Shepherd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Bo	xer Variant)	Clear
Hemophilia B (F9 Exon 7, Terr	ier Variant)	Clear
Hemophilia B (F9 Exon 7, Rho	desian Ridgeback Variant)	Clear
Hereditary Ataxia, Cerebellar	Degeneration (RAB24, Old English Sheepdog and Gordon Setter Va	riant) Clear
Hereditary Cataracts (HSF4 E	ixon 9, Australian Shepherd Variant)	Clear
Hereditary Footpad Hyperker	atosis (FAM83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperker	atosis (DSG1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratos	is (SUV39H2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratos	is, HNPK (SUV39H2)	Clear
Hereditary Vitamin D-Resista	nt Rickets (VDR)	Clear
Hypocatalasia, Acatalasemia	(CAT)	Clear
Hypomyelination and Tremore	s (FNIP2, Weimaraner Variant)	Clear
Hypophosphatasia (ALPL Exo	n 9, Karelian Bear Dog Variant)	Clear
O Ichthyosis (NIPAL4, American	Bulldog Variant)	Clear
O Ichthyosis (ASPRV1 Exon 2, G	erman Shepherd Variant)	Clear

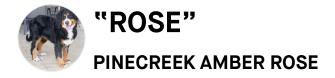


DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
⊘ Ichthyosis (SLC27A4, Great Dane Vari	ant)	Clear
C Ichthyosis, Epidermolytic Hyperkerato	osis (KRT10, Terrier Variant)	Clear
O Ichthyosis, ICH1 (PNPLA1, Golden Ret	riever Variant)	Clear
Inflammatory Myopathy (SLC25A12)		Clear
O Inherited Myopathy of Great Danes (E	BIN1)	Clear
O Inherited Selected Cobalamin Malabs	sorption with Proteinuria (CUBN, Komondor Variant)	Clear
O Intervertebral Disc Disease (Type I) (F	FGF4 retrogene - CFA12)	Clear
Intestinal Lipid Malabsorption (ACSLS	5, Australian Kelpie)	Clear
Sunctional Epidermolysis Bullosa (LAI	MA3 Exon 66, Australian Cattle Dog Variant)	Clear
Sunctional Epidermolysis Bullosa (LAI	MB3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Suvenile Laryngeal Paralysis and Poly	neuropathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1))	Clear
O L-2-Hydroxyglutaricaciduria, L2HGA (I	L2HGDH, Staffordshire Bull Terrier Variant)	Clear
Lagotto Storage Disease (ATG4D)		Clear
O Laryngeal Paralysis (RAPGEF6, Miniat	ture Bull Terrier Variant)	Clear
⊘ Late Onset Spinocerebellar Ataxia (CA	APN1)	Clear
Late-Onset Neuronal Ceroid Lipofusc	inosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)) Clear

DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
Leonberger Polyneuropathy 1 (LPN1, ARHO	GEF10)	Clear
O Leonberger Polyneuropathy 2 (GJA9)		Clear
O Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Standar	d Schnauzer Variant)	Clear
O Ligneous Membranitis, LM (PLG)		Clear
⊘ Limb Girdle Muscular Dystrophy (SGCD, B	oston Terrier Variant)	Clear
C Limb-Girdle Muscular Dystrophy 2D (SGC)	A Exon 3, Miniature Dachshund Variant)	Clear
O Long QT Syndrome (KCNQ1)		Clear
Lundehund Syndrome (LEPREL1)		Clear
Macular Corneal Dystrophy, MCD (CHST6)		Clear
O Malignant Hyperthermia (RYR1)		Clear
May-Hegglin Anomaly (MYH9)		Clear
Methemoglobinemia (CYB5R3, Pit Bull Te	rrier Variant)	Clear
Methemoglobinemia (CYB5R3)		Clear
O Microphthalmia (RBP4 Exon 2, Soft Coate	d Wheaten Terrier Variant)	Clear
O Mucopolysaccharidosis IIIB, Sanfilippo Sy	ndrome Type B, MPS IIIB (NAGLU, Schipperke Varia	nt) Clear
 Mucopolysaccharidosis Type IIIA, Sanfilip Variant) 	po Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachs	shund Clear
 Mucopolysaccharidosis Type IIIA, Sanfilip Huntaway Variant) 	po Syndrome Type A, MPS IIIA (SGSH Exon 6, New Z	Zealand Clear



DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
Mucopolysaccharidosis Type VI, Maroteau Variant)	ıx-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature	Pinscher Clear
Mucopolysaccharidosis Type VII, Sly Synd	rome, MPS VII (GUSB Exon 3, German Shepherd Var	riant) Clear
Mucopolysaccharidosis Type VII, Sly Synd	rome, MPS VII (GUSB Exon 5, Terrier Brasileiro Varia	ant) Clear
Multiple Drug Sensitivity (ABCB1)		Clear
Muscular Dystrophy (DMD, Cavalier King C	Charles Spaniel Variant 1)	Clear
Muscular Dystrophy (DMD, Golden Retriev	rer Variant)	Clear
Musladin-Lueke Syndrome, MLS (ADAMTS	SL2)	Clear
Myasthenia Gravis-Like Syndrome (CHRN	E, Heideterrier Variant)	Clear
🔗 Myotonia Congenita (CLCN1 Exon 23, Aust	tralian Cattle Dog Variant)	Clear
S Myotonia Congenita (CLCN1 Exon 7, Minia)	ture Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund V	/ariant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman F	Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Re	etriever Variant)	Clear
Nemaline Myopathy (NEB, American Bulld	og Variant)	Clear
Neonatal Cerebellar Cortical Degeneration	n (SPTBN2, Beagle Variant)	Clear
Neonatal Encephalopathy with Seizures, N	NEWS (ATF2)	Clear
Neonatal Interstitial Lung Disease (LAMPS)	3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rotty	veiler Variant)	Clear



DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
Neuroaxonal Dystrophy, NAD (TECPR2, Spani	sh Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT	1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (C	TSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPF	P1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN	15 Exon 4 SNP, Border Collie Variant)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN	15 Exon 4 Deletion, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CL)	N6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFS	D8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN	18, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN	I8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN	18 Insertion, Saluki Variant)	Clear
 Neuronal Ceroid Lipofuscinosis, Cerebellar A Variant) 	taxia, NCL4A (ARSG Exon 2, American Staffordsh	ire Terrier Clear
Oculocutaneous Albinism, OCA (SLC45A2 Exe	on 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2, Sr	nall Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samoyed	l Variant)	Clear
Osteochondrodysplasia (SLC13A1, Poodle Va	riant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle Va	ariant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachsh	nund Variant)	Clear

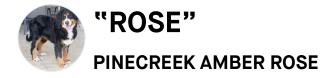
DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
Osteogenesis Imperfecta (COL1A1,	Golden Retriever Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)	Clear
Pachyonychia Congenita (KRT16, D	ogue de Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)		Clear
Persistent Mullerian Duct Syndrom	e, PMDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4	I, Karelian Bear Dog Variant)	Clear
Platelet Factor X Receptor Deficien	cy, Scott Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PK	(D1)	Clear
Pompe's Disease (GAA, Finnish and	d Swedish Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exc	on 8)	Clear
Primary Ciliary Dyskinesia, PCD (NN	/IE5, Alaskan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CC	CDC39 Exon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (AD	AMTS17 Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (AD	AMTS10 Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (AD	AMTS10 Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Variant) 	Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-P	ei Clear

DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
Progressive Retinal Atrophy (SAG)		Clear
Progressive Retinal Atrophy (IFT122 Exon 26,	Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy, Bardet-Biedl Syr	ndrome (BBS2 Exon 11, Shetland Sheepdog Varia	nt) Clear
Progressive Retinal Atrophy, CNGA (CNGA1 E)	xon 9)	Clear
Progressive Retinal Atrophy, crd1 (PDE6B, Am	nerican Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPG	RIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB1)		Clear
Progressive Retinal Atrophy, PRA3 (FAM161A)		Clear
Progressive Retinal Atrophy, prcd (PRCD Exo	ו 1)	Clear
Progressive Retinal Atrophy, rcd1 (PDE6B Exc	on 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE6A)		Clear
Proportionate Dwarfism (GH1 Exon 5, Chihuał	nua Variant)	Clear
Protein Losing Nephropathy, PLN (NPHS1)		Clear
Pyruvate Dehydrogenase Deficiency (PDP1, S	paniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5, Based)	senji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Bea	agle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 10, Te	errier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Lab	rador Retriever Variant)	Clear

DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
Pyruvate Kinase Deficiency (PKLR Exon 7, F	Pug Variant)	Clear
Raine Syndrome (FAM20C)		Clear
Recurrent Inflammatory Pulmonary Disease	e, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular De	ermatofibrosis (FLCN Exon 7)	Clear
Retina Dysplasia and/or Optic Nerve Hypop	olasia (SIX6 Exon 1, Golden Retriever Variant)	Clear
Sensory Neuropathy (FAM134B, Border Col	lie Variant)	Clear
Severe Combined Immunodeficiency, SCID	(PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCID	(RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English Sp	oringer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAID,	, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labrac	lor Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapeake	e Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alpine Dac	hsbracke Variant)	Clear
Spinocerebellar Ataxia with Myokymia and,	/or Seizures (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Atax	ia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Atax	ia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labrade	or Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase De	eficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear

DNA Test Report	Test Date: April 10th, 2023	embk.me/pinecreekamberrose
OTHER RESULTS		
O Thrombopathia (RASGRP1 Exon 5, Americar	n Eskimo Dog Variant)	Clear
🔗 Thrombopathia (RASGRP1 Exon 5, Basset H	ound Variant)	Clear
O Thrombopathia (RASGRP1 Exon 8, Landsee	r Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS13)	3)	Clear
O Ullrich-like Congenital Muscular Dystrophy	(COL6A3 Exon 10, Labrador Retriever Variant)	Clear
O Ullrich-like Congenital Muscular Dystrophy	(COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vestibular Syndron	ne (PTPRQ Exon 39, Doberman Pinscher)	Clear
⊘ Urate Kidney & Bladder Stones (SLC2A9)		Clear
⊘ Von Willebrand Disease Type II, Type II vWD	(VWF, Pointer Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vW	D (VWF Exon 4, Terrier Variant)	Clear
⊘ Von Willebrand Disease Type III, Type III vW	D (VWF Intron 16, Nederlandse Kooikerhondje Vari	iant) Clear
⊘ Von Willebrand Disease Type III, Type III vW	D (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephropathy, XLHN (CC)	DL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopathy (MTM1, Lab	rador Retriever Variant)	Clear
X-Linked Progressive Retinal Atrophy 1, XL-	PRA1 (RPGR)	Clear
X-linked Severe Combined Immunodeficier	cy, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
X-linked Severe Combined Immunodeficier	ncy, X-SCID (IL2RG, Corgi Variant)	Clear
Xanthine Urolithiasis (XDH, Mixed Breed Va	riant)	Clear

Test Date: April 10th, 2023


embk.me/pinecreekamberrose

Clear

OTHER RESULTS

S-Mannosidosis (MANBA Exon 16, Mixed-Breed Variant)

Registration: American Kennel Club (AKC)

Test Date: April 10th, 2023

embk.me/pinecreekamberrose

HEALTH REPORT

Notable result

Degenerative Myelopathy, DM

Pinecreek Amber Rose inherited one copy of the variant we tested for Degenerative Myelopathy, DM

What does this result mean?

This variant should not impact Rose's health. This variant is inherited in an autosomal recessive manner, meaning that a dog needs two copies of the variant to show signs of this condition. Rose is unlikely to develop this condition due to this variant because she only has one copy of the variant.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

What is Degenerative Myelopathy, DM?

The dog equivalent of Amyotrophic Lateral Sclerosis, or Lou Gehrig's disease, DM is a progressive degenerative disorder of the spinal cord. Because the nerves that control the hind limbs are the first to degenerate, the most common clinical signs are back muscle wasting and gait abnormalities.

When signs & symptoms develop in affected dogs

Affected dogs do not usually show signs of DM until they are at least 8 years old.

How vets diagnose this condition

Definitive diagnosis requires microscopic analysis of the spinal cord after death. However, veterinarians use clues such as genetic testing, breed, age, and other diagnostics to determine if DM is the most likely cause of your dog's clinical signs.

How this condition is treated

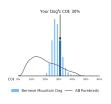
As dogs are seniors at the time of onset, the treatment for DM is aimed towards increasing their comfort through a combination of lifestyle changes, medication, and physical therapy.

Actions to take if your dog is affected

• Giving your dog the best quality of life for as long as possible is all you can do after receiving this diagnosis.

Test Date: April 10th, 2023

embk.me/pinecreekamberrose


INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

30%

RESULT

High Diversity

How common is this amount of diversity in purebreds:

High Diversity

How common is this amount of diversity in purebreds:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.